Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 72
1.
J Pediatr Genet ; 13(2): 158-165, 2024 Jun.
Article En | MEDLINE | ID: mdl-38721578

Transient receptor potential vanilloid 4 channel ( TRPV4 ) gene mutations have been described in skeletal system and peripheral nervous system pathology. The case described here is a 9-year-old male child patient, born to a nonconsanguineous marriage with normal birth history who had difficulty in walking and stiffness of joints for the last 7 years, and progressive weakness of all four limbs and urine incontinence for 1 year following falls. Physical examination showed below-average weight and height and short trunk. Musculoskeletal examination revealed bony prominence bilaterally in the knee joints and contractures in knee and elbow joints with brachydactyly; muscle tone was increased, with brisk deep tendon reflexes. Skeletal survey showed platyspondyly with anterior beaking with metaphyseal dysplasia. Magnetic resonance imaging of the spine revealed atlantoaxial instability with hyperintense signal changes at a cervicomedullary junction and upper cervical cord with thinning and spinal canal stenosis suggestive of compressive myelopathy with platyspondyly and anterior beaking of the spine at cervical, thoracic and lumbar vertebrae. Exome sequencing revealed a heterozygous de novo variant c.2389G > A in exon 15 of TRPV4 , which results in the amino acid substitution p.Glu797Lys in the encoded protein. The characteristics observed indicated spondylometaphyseal dysplasia, Kozlowski type (SMD-K). The child underwent surgical intervention for compressive myelopathy by reduction of atlantoaxial dislocation with C1 lateral mass and C2 pars fusion using rib graft and fixation using screws and rods. To conclude, for any child presenting with progressive kyphoscoliosis, short stature, platyspondyly, and metaphyseal changes, a diagnosis of SMD-K should be considered and the patient and family should be advised to avoid spinal injuries.

3.
Mov Disord ; 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38581205

BACKGROUND: Based on a limited number of reported families, biallelic CA8 variants have currently been associated with a recessive neurological disorder named, cerebellar ataxia, mental retardation, and dysequilibrium syndrome 3 (CAMRQ-3). OBJECTIVES: We aim to comprehensively investigate CA8-related disorders (CA8-RD) by reviewing existing literature and exploring neurological, neuroradiological, and molecular observations in a cohort of newly identified patients. METHODS: We analyzed the phenotype of 27 affected individuals from 14 families with biallelic CA8 variants (including data from 15 newly identified patients from eight families), ages 4 to 35 years. Clinical, genetic, and radiological assessments were performed, and zebrafish models with ca8 knockout were used for functional analysis. RESULTS: Patients exhibited varying degrees of neurodevelopmental disorders (NDD), along with predominantly progressive cerebellar ataxia and pyramidal signs and variable bradykinesia, dystonia, and sensory impairment. Quadrupedal gait was present in only 10 of 27 patients. Progressive selective cerebellar atrophy, predominantly affecting the superior vermis, was a key diagnostic finding in all patients. Seven novel homozygous CA8 variants were identified. Zebrafish models demonstrated impaired early neurodevelopment and motor behavior on ca8 knockout. CONCLUSION: Our comprehensive analysis of phenotypic features indicates that CA8-RD exhibits a wide range of clinical manifestations, setting it apart from other subtypes within the category of CAMRQ. CA8-RD is characterized by cerebellar atrophy and should be recognized as part of the autosomal-recessive cerebellar ataxias associated with NDD. Notably, the presence of progressive superior vermis atrophy serves as a valuable diagnostic indicator. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

6.
J Family Med Prim Care ; 13(1): 208-220, 2024 Jan.
Article En | MEDLINE | ID: mdl-38482315

Background: H/ACA small nucleolar ribonucleoproteins (snoRNP) form a complex with multiple proteins to accomplish the pseudouridylation of rRNA. The assembly of H/ACA small nucleolar ribonucleoproteins (snoRNP) is initiated by H/ACA ribonucleoprotein Assembly factor, that is, SHQ1. Mutations in SHQ1 have been reported to cause two disorders namely, dystonia-35 childhood onset (OMIM*619921) and neurodevelopmental disorder with seizures and dystonia (OMIM*619922), both of which are inherited in an autosomal recessive manner. Considering the high genetic and clinical diversity of SHQ1-related clinical features and the importance of SHQ1 in the assembly of the H/ACA snoRNP complex, it is important to take a systematic approach to delineate the genetic diagnosis and impact of mutations on protein structure and stability. Methods: Whole exome sequencing followed by Sanger validation was performed in an individual with the clinical features of neurodevelopmental disorder with seizures and dystonia (OMIM*619922). Protein modeling studies of all the reported SHQ1 variants to date were performed using freely available web servers Interactive Tree of Life, String, BioGrid, ShinyGO, DAVID, and Pathvix. Protein structures were visualized using Pymol. Results and Discussion: We identified compound heterozygous variants, one known frameshift deletion c. 828_831del, p.(Asp277Serfs*27) and the other novel missense variant c. 1157A>C, p.(Tyr386Ser) found in an individual with neurodevelopmental disorder, seizures, movement disorder, and hypomyelination leukodystrophy on neuroimaging. Protein-interactome studies identified potential genetic interactors that include GAR1, NAF1, TRUB1, UTP15, DKC1, NOP10, NPHOSPH 10, KRR1, NOP58, NOP56, FBL, RRP9, NHP2, RUVBL1, and RUVBL2. Ribosome biogenesis in eukaryotes, RNA polymerase, RNA transport, spliceosome, ribosome, cytosolic DNA-sensing pathway, DNA replication, mismatch repair, base excision repair, nucleotide excision repair, and basal transcription factors process were identified as the linked pathways with the prioritized genes. Conclusion: In conclusion, a sophisticated genotype and phenotype correlation followed by linking the genes to the key biological pathways opens new avenues to understand disease pathology and plan for therapeutic interventions.

7.
medRxiv ; 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38405817

FLVCR1 encodes Feline leukemia virus subgroup C receptor 1 (FLVCR1), a solute carrier (SLC) transporter within the Major Facilitator Superfamily. FLVCR1 is a widely expressed transmembrane protein with plasma membrane and mitochondrial isoforms implicated in heme, choline, and ethanolamine transport. While Flvcr1 knockout mice die in utero with skeletal malformations and defective erythropoiesis reminiscent of Diamond-Blackfan anemia, rare biallelic pathogenic FLVCR1 variants are linked to childhood or adult-onset neurodegeneration of the retina, spinal cord, and peripheral nervous system. We ascertained from research and clinical exome sequencing 27 individuals from 20 unrelated families with biallelic ultra-rare missense and predicted loss-of-function (pLoF) FLVCR1 variant alleles. We characterize an expansive FLVCR1 phenotypic spectrum ranging from adult-onset retinitis pigmentosa to severe developmental disorders with microcephaly, reduced brain volume, epilepsy, spasticity, and premature death. The most severely affected individuals, including three individuals with homozygous pLoF variants, share traits with Flvcr1 knockout mice and Diamond-Blackfan anemia including macrocytic anemia and congenital skeletal malformations. Pathogenic FLVCR1 missense variants primarily lie within transmembrane domains and reduce choline and ethanolamine transport activity compared with wild-type FLVCR1 with minimal impact on FLVCR1 stability or subcellular localization. Several variants disrupt splicing in a mini-gene assay which may contribute to genotype-phenotype correlations. Taken together, these data support an allele-specific gene dosage model in which phenotypic severity reflects residual FLVCR1 activity. This study expands our understanding of Mendelian disorders of choline and ethanolamine transport and demonstrates the importance of choline and ethanolamine in neurodevelopment and neuronal homeostasis.

11.
Clin Genet ; 105(2): 226-227, 2024 02.
Article En | MEDLINE | ID: mdl-37849383

We report the third case of FADS due to biallelic DOK7 variants, which further strengthens the association of DOK7 with this lethal phenotype and lack of genotype phenotype correlation.


Arthrogryposis , Humans , Arthrogryposis/genetics , Phenotype , Muscle Proteins/genetics
15.
Genes (Basel) ; 14(9)2023 08 23.
Article En | MEDLINE | ID: mdl-37761804

Snijders Blok-Campeau syndrome (SNIBCPS, OMIM# 618205) is an extremely infrequent disease with only approximately 60 cases reported so far. SNIBCPS belongs to the group of neurodevelopmental disorders (NDDs). Clinical features of patients with SNIBCPS include global developmental delay, intellectual disability, speech and language difficulties and behavioral disorders like autism spectrum disorder. In addition, patients with SNIBCPS exhibit typical dysmorphic features including macrocephaly, hypertelorism, sparse eyebrows, broad forehead, prominent nose and pointed chin. The severity of the neurological effects as well as the presence of other features is variable among subjects. SNIBCPS is caused likely by pathogenic and pathogenic variants in CHD3 (Chromodomain Helicase DNA Binding Protein 3), which seems to be involved in chromatin remodeling by deacetylating histones. Here, we report 20 additional patients with clinical features compatible with SNIBCPS from 17 unrelated families with confirmed likely pathogenic/pathogenic variants in CHD3. Patients were analyzed by whole exome sequencing and segregation studies were performed by Sanger sequencing. Patients in this study showed different pathogenic variants affecting several functional domains of the protein. Additionally, none of the variants described here were reported in control population databases, and most computational predictors suggest that they are deleterious. The most common clinical features of the whole cohort of patients are global developmental delay (98%) and speech disorder/delay (92%). Other frequent features (51-74%) include intellectual disability, hypotonia, hypertelorism, abnormality of vision, macrocephaly and prominent forehead, among others. This study expands the number of individuals with confirmed SNIBCPS due to pathogenic or likely pathogenic variants in CHD3. Furthermore, we add evidence of the importance of the application of massive parallel sequencing for NDD patients for whom the clinical diagnosis might be challenging and where deep phenotyping is extremely useful to accurately manage and follow up the patients.


Developmental Disabilities , Hypertelorism , Intellectual Disability , Language Development Disorders , Megalencephaly , Humans , DNA Helicases/genetics , Histones , Intellectual Disability/genetics , Megalencephaly/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Developmental Disabilities/genetics
17.
Epilepsia Open ; 8(4): 1383-1404, 2023 Dec.
Article En | MEDLINE | ID: mdl-37583270

OBJECTIVE: Literature on the genotypic spectrum of Infantile Epileptic Spasms Syndrome (IESS) in children is scarce in developing countries. This multicentre collaboration evaluated the genotypic and phenotypic landscape of genetic IESS in Indian children. METHODS: Between January 2021 and June 2022, this cross-sectional study was conducted at six centers in India. Children with genetically confirmed IESS, without definite structural-genetic and structural-metabolic etiology, were recruited and underwent detailed in-person assessment for phenotypic characterization. The multicentric data on the genotypic and phenotypic characteristics of genetic IESS were collated and analyzed. RESULTS: Of 124 probands (60% boys, history of consanguinity in 15%) with genetic IESS, 105 had single gene disorders (104 nuclear and one mitochondrial), including one with concurrent triple repeat disorder (fragile X syndrome), and 19 had chromosomal disorders. Of 105 single gene disorders, 51 individual genes (92 variants including 25 novel) were identified. Nearly 85% of children with monogenic nuclear disorders had autosomal inheritance (dominant-55.2%, recessive-14.2%), while the rest had X-linked inheritance. Underlying chromosomal disorders included trisomy 21 (n = 14), Xq28 duplication (n = 2), and others (n = 3). Trisomy 21 (n = 14), ALDH7A1 (n = 10), SCN2A (n = 7), CDKL5 (n = 6), ALG13 (n = 5), KCNQ2 (n = 4), STXBP1 (n = 4), SCN1A (n = 4), NTRK2 (n = 4), and WWOX (n = 4) were the dominant single gene causes of genetic IESS. The median age at the onset of epileptic spasms (ES) and establishment of genetic diagnosis was 5 and 12 months, respectively. Pre-existing developmental delay (94.3%), early age at onset of ES (<6 months; 86.2%), central hypotonia (81.4%), facial dysmorphism (70.1%), microcephaly (77.4%), movement disorders (45.9%) and autistic features (42.7%) were remarkable clinical findings. Seizures other than epileptic spasms were observed in 83 children (66.9%). Pre-existing epilepsy syndrome was identified in 21 (16.9%). Nearly 60% had an initial response to hormonal therapy. SIGNIFICANCE: Our study highlights a heterogenous genetic landscape and phenotypic pleiotropy in children with genetic IESS.


Down Syndrome , Spasms, Infantile , Male , Humans , Child , Infant , Female , Cross-Sectional Studies , Spasms, Infantile/genetics , Seizures/genetics , Spasm , N-Acetylglucosaminyltransferases
18.
Adv Biomed Res ; 12: 148, 2023.
Article En | MEDLINE | ID: mdl-37564434

Biotinidase deficiency is a rare autosomal recessive neurometabolic disorder resulting in biotin deficiency. Our patient presented with seizures and developmental delay since infancy and was started on megavitamin supplements. At 14 years, she presented with motor regression with encephalopathy after discontinuation of vitamins. There were no skin and hair changes. Magnetic resonance imaging (MRI) of the brain showed bilateral symmetrical posterior putamen signal changes. Tandem mass spectroscopy showed increased methyl malonyl carnitine and 3-OH isovaleryl carnitine. There was a low biotinidase level, and a pathogenic variant in the BTD gene in the next-generation sequencing was identified. Special importance is placed on the unusual symmetric posterior putamen involvement seen in MRI of the brain.

19.
J Pediatr Genet ; 12(3): 213-218, 2023 Sep.
Article En | MEDLINE | ID: mdl-37575639

Ethylmalonic encephalopathy is a rare neurometabolic disorder with central nervous system involvement and vasculopathy. It is presented in infancy with developmental delay, acrocyanosis, petechiae, chronic diarrhea, and early death. This was a retrospective study of confirmed cases of ethylmalonic aciduria from a tertiary care hospital over a period of 5 years from January 2015 to December 2020. Case details including analysis of clinical history, investigations, and outcomes are presented. Of six cases, male-to-female ratio was 4:2. Mean age of presentation was 35.5 months (range: 14-83 months). Consanguinity, global developmental delay, failure to thrive, skin rashes, microcephaly, hypotonia, and exaggerated deep tendon reflexes were observed in all cases. Chronic diarrhea was presented in five cases. The serum levels of C4 carnitine and urinary levels of ethylmalonic acid were increased in all cases. Magnetic resonance imaging (MRI) of the brain showed heterogenous bilateral symmetrical changes in the basal ganglia in five cases, and in one case, MRI could not be done. Genetic testing in two cases showed a homozygous variant in ETHE1 gene. Four children died, while the other two cases showed a decreased in recurrent encephalopathies and diarrhea after starting metronidazole. All children had global developmental delay, failure to thrive, skin rashes, central hypotonia, increased C4 carnitine levels in the serum, and increased ethylmalonic acid in the urine. Chronic diarrhea, acrocyanosis, and basal ganglia change in the MRI of the brain also give important clues for diagnosis. Metronidazole is useful in preventing recurrent episodes of encephalopathy.

20.
J Pediatr Genet ; 12(3): 199-205, 2023 Sep.
Article En | MEDLINE | ID: mdl-37575643

Infantile systemic hyalinosis is a very rare fatal autosomal recessive genetic disorder with a mutation in capillary morphogenesis gene-2- CMG2 /Human anthrax toxin-2 ANTXR2 resulting in spindle cell proliferation, altered collagen metabolism along with extensive deposition of hyaline material in the skin and several tissues. To date only a few cases have been reported in the literature, hence we reported this series. This study is a retrospective chart review of infants diagnosed with infantile systemic hyalinosis from January 2015 through December 2020 at a tertiary care children's hospital in South India. The mean age of presentation was 9.4 months, with a male to female ratio of 1:5. All children were born of consanguineous marriage except one child. All children had symptoms at birth, painful limb movements, multiple joint stiffness, gingival thickening, skin lesions around perianal, perioral areas, and frog-like position. Three (50%) children had stiff skin. Routine tests including complete blood count, liver function test, renal function test, creatine phosphokinase, nerve conduction studies, and metabolic tests were normal in all children. Skin biopsy showed hyalinized collagenous tissue in the dermis. Genetic study results of two cases revealed pathogenic variants in ANTXR2 gene. Infantile systemic hyalinosis should be considered in infants presenting with painful limb movements. The diagnosis helped in avoiding unnecessary investigations and prognostications. The genetic information from proband mutation helped in prenatal diagnosis in two families.

...